

Single electrons from semileptonic charm meson decays in 200 GeV pp collisions at PHENIX

Xinhua Li (UC Riverside)

for the PHENIX Collaboration

Quark Matter 2004 Conference Jan. 11 – 17, 2004 Oakland, California

Why charm in p+p collisions @ RHIC

Charm production mainly through gluon-gluon fusion and quark-antiquark annihilation. Quark-gluon scattering also involved at higher order. (R. Vogt, hep-ph/0111271)

Charm measurement intrinsically interesting.

Reference to understand:

- charm production in heavy ion collisions probe of initial state and state of nuclear medium
- J/ Ψ suppression in heavy ion collision one of signature of QGP

PHENIX in Run2 p+p at 200 GeV

This analysis uses:

15M MiniBias events in |Z_{vertex}| < 25 cm

465M sampled events by Level1 Trigger

For electron measurements

■ BBC: vertex position, trigger

DC, PC1: tracking

momentum measurement

RICH: electron ID

PC3: charge veto for photon ID

■ EMCal: electron ID

energy measurement

How to detect charm

Direct method:

Reconstruction of D-meson

(e.g. $D^0 \rightarrow K^- \pi^+$).

Very challenging without

measurement of displaced

Vertex.

Indirect method: Measure leptons from semileptonic decay of charm mesons. Used at PHENIX.

Challenging at PHENIX

Charm $e/\pi \sim 3-5x10^{-4}$ expected in p+p @ 200 GeV

Backgrounds

$$\pi^{0} \rightarrow e^{+}e^{-} \gamma$$

$$\pi^{0} \rightarrow \gamma \gamma$$

$$e^{+}e^{-}$$

Dalitz: Branching Fraction=1.2%

Conversion: comparable to Dalitz

$$\eta \rightarrow e^{+}e^{-}\gamma
\eta \rightarrow \gamma \gamma
\downarrow e^{+}e^{-}$$

 e^+e^- 10-20% of π^0 contribution at high pt

Others small, e.g. K, ρ , ω , η ', ϕ decays

Three approaches at PHENIX

(Talk by S. Kelly in Parallel 2 on Thursday)

Photon converter method:

requires good statistics of dedicated converter run

(Poster Flavor 15)

Cocktail method: needs full knowledge of π^0 spectrum (Poster Flavor 11)

(e, γ) coincidence: normalization in π^0 spectrum not used (this poster)

Way to electrons from non- π^0 sources

 π^0 simulation following decay branching fractions

$$B(\pi^0 -> \gamma \gamma) = 98.8\%$$

$$B(\pi^0 -> \gamma e^+ e^-) = 1.2\%$$

 π^0 reconstructed from (e, γ) coincidence

Calculate R=coincidence / electron inclusive

Electrons from non- π^0 sources/electron inclusive = 1 - R(data)/R(simulation)

Simulation input

π⁰ is well measured at PHENIX for p+p @ 200 GeV PRL 91, 241803 (2003)

absolute normalization (A) is not used

(e, γ) coincidence

Internal/external γ conversion: $\pi^0 \rightarrow \gamma e^+e^-$

Reconstruct π^0 from (e,γ) coincidence

Rate of (e,γ) coincidence

coincidence increases with p_t due to less bending of electron in magnetic field

no coincidence from charm meson decays data<simulation at high p_t

no charm expected to be seen at low p_t data=simulation

Electrons from non- π^0 sources / inclusive in pp collisions at 200 GeV

based on PHENIX η spectrum in p+p at 200 GeV and η simulation

Electrons from η Dalitz and conversions

Ratio of electrons from non-photonic sources over inclusive

after η subtraction

Electron inclusive spectrum in pp collisions at 200 GeV

Electrons from non-photonic sources in pp collisions at 200 GeV

Summary

Extract electrons from non- π^0 sources by (e,γ) coincidence Subtract η with PHENIX η spectrum and simulation New method applicable to dAu, AuAu data analysis

Electron yield from non-photonic sources is measured K_{e3} contribution is estimated small Electron signal from charm production is evident PYTHIA prediction is compared *(Poster Flavor 11)* Set pp reference for dAu and AuAu